top of page
Search
parismannon975jwy

MultiEcuScan 4.8 + Activation - MOTORCARSOFT.COM



We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of 3 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.


This system was one of the test methods considered for measuring the radius of curvature of one or more of the 18 segmented mirrors that form the 6.5 m diameter primary mirror (PM) of the James Webb Space Telescope (JWST). The assembled telescope will be tested at cryogenic temperatures in a 17-m diameter by 27-m high vacuum chamber at the Johnson Space Center. This system uses a Leica Absolute Distance Meter (ADM), at a wavelength of 780 nm, combined with beam-steering and beam-shaping optics to make a differential distance measurement between a ring mirror on the reflective null assembly and individual PM segments. The ADM is located inside the same Pressure-Tight Enclosure (PTE) that houses the test interferometer. The PTE maintains the ADM and interferometer at ambient temperature and pressure so that they are not directly exposed to the telescope s harsh cryogenic and vacuum environment. This system takes advantage of the existing achromatic objective and reflective null assembly used by the test interferometer to direct four ADM beamlets to four PM segments through an optical path that is coincident with the interferometer beam. A mask, positioned on a linear slide, contains an array of 1.25 mm diameter circular subapertures that map to each of the 18 PM segments as well as six positions around the ring mirror. A down-collimated 4 mm ADM beam simultaneously covers 4 adjacent PM segment beamlets and one ring mirror beamlet. The radius, or spacing, of all 18 segments can be measured with the addition of two orthogonally-oriented scanning pentaprisms used to steer the ADM beam to any one of six different sub-aperture configurations at the plane of the ring mirror. The interferometer beam, at a wavelength of 687 nm, and the ADM beamlets, at a wavelength of 780 nm, pass through the objective and null so that the rays are normally incident on the parabolic PM surface. After reflecting off the PM, both the ADM and interferometer beams return to their respective




multi ecu scan keygen 15



Absolute distance measurements can be achieved by frequency scanning interferometry which uses a tunable laser. The main drawback of this method is that it is extremely sensitive to the movement of targets. In addition, since this method is limited to the linearity of frequency scanning, it is commonly used for close measurements within tens of meters. In order to solve these problems, a double-sideband frequency scanning interferometry system is presented in the paper. It generates two opposite frequency scanning signals through a fixed frequency laser and a Mach-Zehnder modulator. And the system distinguishes the two interference fringe patterns corresponding to the two signals by IQ demodulation (i.e., quadrature detection) of the echo. According to the principle of double-sideband modulation, the two signals have the same characteristics. Therefore, the error caused by the target movement can be effectively eliminated, which is similar to dual-laser frequency scanned interferometry. In addition, this method avoids the contradiction between laser frequency stability and swept performance. The system can be applied to measure the distance of the order of kilometers, which profits from the good linearity of frequency scanning. In the experiment, a precision about 3 μm was achieved for a kilometer-level distance.


Future NASA proposals include the placement of optical interferometer systems in space for a wide variety of astrophysical studies including a vastly improved deflection test of general relativity, a precise and direct calibration of the Cepheid distance scale, and the determination of stellar masses (Reasenberg et al., 1988). There are also plans for placing large array telescopes on the moon with the ultimate objective of being able to measure angular separations of less than 10 mu-arc seconds (Burns, 1990). These and other future projects will require interferometric measurement of the (baseline) distance between the optical elements comprising the systems. Eventually, space qualifiable interferometers capable of picometer (10^-12m) relative precision and nanometer (10^ -9m) absolute precision will be required. A numerical model was developed to emulate the capabilities of systems performing interferometric noncontact absolute distance measurements. The model incorporates known methods to minimize signal processing and digital sampling errors and evaluates the accuracy limitations imposed by spectral peak isolation using Hanning, Blackman, and Gaussian windows in the Fast Fourier Transform Technique. We applied this model to the specific case of measuring the relative lengths of a compound Michelson interferometer using a frequency scanned laser. By processing computer simulated data through our model, the ultimate precision is projected for ideal data, and data containing AM/FM noise. The precision is shown to be limited by non-linearities in the laser scan. A laboratory system was developed by implementing ultra-stable external cavity diode lasers into existing interferometric measuring techniques. The capabilities of the system were evaluated and increased by using the computer modeling results as guidelines for the data analysis. Experimental results measured 1-3 meter baselines with


Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.


We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 10-7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications.


Apparatus is described for determining the distance to lightning strokes from a single station. The apparatus includes a first loop antenna system for sensing the magnetic field produced by the lightning which is filtered, square rooted, and fed into a peak voltage holding circuit. A second antenna is provided for sensing the electric field produced by the lightning which is fed into a filter, an absolute value meter, and to a peak voltage holding circuit. A multivibrator gates the magnetic and electric signals through the peak holding circuits to a ratio meter which produces a signal corresponding to the ratio between the magnetic component and the electric component. The amplitude of this signal is proportional to the distance from the apparatus to the lightning stroke.


In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability 3.910-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).


We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect. 2ff7e9595c


0 views0 comments

Recent Posts

See All

Komentarze


bottom of page